

3

4

5

6-7

8-9

10-11

15

2

1

Executive Summary

What Makes Software Vulnerable?

How are Vulnerabilities Identified?

Navigating AppSec Solutions

Static Application Security Testing (SAST)

Dynamic Application Security Testing (DAST)

Mayhem for Security Testing

All Together Now

Knowing What’s In It For You

Now, It’s Your Turn

12-13

14

Applications are the heart of every organization,

pumping information throughout the business to

provide users with the data needed to drive their

objectives. In the past decade, applications became

a driving force in all aspects of enterprises.

Due to this pivotal role in organizations, applications

are the target of 85% of cyber security attacks,

according to SAP. A multitude of security testing

solutions fail to evolve with the everchanging

cybersecurity landscape. To protect your company

from exploitable vulnerabilities in applications, you’ll

need advanced forms of testing that grow with you.

The Buyer’s Guide to Mayhem and Comprehensive

Application Security provides an overview of

different application security solutions. You will learn

how different solutions excel and where gaps are

left behind. A combination of tools is recommended

to help organizations implement a comprehensive

application security testing program that adapts to

ever-changing security needs.

With this newfound application security testing

knowledge, Mayhem can protect your company

against cyber security threats. Mayhem is known to

prevent exploitables leading to security attacks.

2

Software bugs are born when detailed programs are built with mistakes.
These bugs are viewed as defects until malicious activity exploits them as
vulnerabilities. Though, applications may have software vulnerabilities for a
variety of reasons including:

Mistakes
Developers live and die by the roadmap, but their mission to quickly deliver creative

features may make mistakes that harm users.

Misconfiguration
Application stacks are complex. This makes misconfigurations of application

components lead to vulnerabilities. An instance of these components is frameworks

to databases to servers to platform.

Inherited Vulnerability
Free, open source and third-party code is more popular than ever with development

demands. Free, however, is never free. An organization’s benefit of speed and scale

could be paying a price in security. Organizations can inherit security risks from the

unchecked application supply chain.

Neglect
Application verification and validation best practices call for positive testing and

negative testing. The objective of negative testing is to ensure the software remains

stable in unexpected use cases and is free of vulnerabilities.

The application attack surface is growing by 111 billion new
lines of code every year, with newly reported zero-day exploits
rising from one-per-week in 2015 to one-per day in 2021.

1

2

3

4

3

Application vulnerabilities fall into one of three risk categories:

Known Known
Identifiable risks known to lead to compromise (CVE) with 100s to 1,000s of vulnerabilities in a given software.

Known Knowns are identifiable risks that are known to lead to compromise.
These risks are identified through a Common Vulnerabilities and Exposure
(CVE) ID.

Known Unknown
Identifiable risks that could potentially lead to a compromise (CWE) with 10,000s to 1Ms of defects in a given software.

Known Unknowns are identifiable risks that could potentially lead to
compromise, and these risks exhibit software flaw patterns that are likely to
create exploitable vulnerabilities. These risks are identified through a Common
Weakness Enumeration (CWE) ID.

Unknown Unknown
Unidentifiable risks not detectable by CVE or CWE and an unknown quantity of risks.

Unknown Unknowns are risks that cannot be identified. Unknown Unknowns
present the greatest risk, because they enable adversaries to operate
unnoticed for an extended period of time.

4

The Spectrum of Risks

Known Knowns Known Unknown Unknown Unknown

A myriad of security tools creates the foundation software security
best practices. Organizations need different security tools to satisfy their
unique needs. By and large, most software security solutions fall into one of
two categories:

Secure the Source
Integrate application security testing tools through the SDLC to find
vulnerabilities and weakness before deployment. An example of Secure
the Source is Static Code Analysis (SAST), which works as prevention
during the development stage.

Find and Fix
Identify security vulnerabilities and misconfigurations in production
applications for development teams to fix later. An example of Find
and Fix is Dynamic Analysis (DAST), which works as detection during
quality assurance.

In the sections following, consider the detailed technologies that fall within
these two categories and outline how these tests could minimizing software
security risk in your organization.

1

2

5

Static application security testing (also known as static analysis or static
code analysis) tools uncover bugs by analyzing source code. The defects
they identify are known unknown risks. SAST vendors dissect each CWE to
uncover specifications. Those specifications are then implemented to detect
code flaws and weaknesses that could lead to vulnerabilities. This is a long,
laborious process. Thus, SASTs, as with most application security testing (AST)
tools, are better as they age. More experience and knowledge built into
SASTs products can catch more defects.

SASTs operate in the world of “what-ifs”, taking in potentially relevant information
to make assumptions on what “could-be”. The cautious nature of SASTs
processes with good intent, but this approach leads to high false-positives and
inaccuracies for many organizations.

Many organizations gripe about
SAST’s inaccuracy. All businesses
lack time and resources, and
therefore, it is unrealistic for them
to chase every potential issue.

Despite its shortcomings, SASTs
have their place in the SDL as
recommended, preventative
practice. Simply put, it’s good
hygiene. Since static analysis
requires source code, SASTs
are able to provide prescriptive
remediation advice, down to
the line of code. Static analysis
can also be introduced earlier
than most tools in the software
development lifecycle, lowering
cost and effort for remediation.

A vendor with a market leading
SAST solution revealed that, on
average, it takes an enterprise
approximately 8 years for their
code to be deemed “clean”.

6

9

SCAs operate in the world of “what-is”, relying on accepted and publicly
known information to uncover vulnerabilities. While they prevent adversaries
from exploiting low-hanging fruits, they foster a reactive security approach --
meaning they mitigate risk after the window of exposure has opened. When
vulnerabilities become known, they are publicly disclosed to organizations and
adversaries at the same time. By nature, vulnerabilities are frictionless weapons.
Vulnerabilities can be turned around and used in nefarious ways, at scale. Thus,
time is of the essence when remediating these vulnerabilities.

SCAs offer prescriptive advice, listing the affected component and
providing a link to its patch. This level of actionability is unique in DAST
solutions. However, bear in mind, not all known vulnerabilities flagged by an
SCA solution is exploitable. Additionally, each patch must be tested to ensure
interoperability with the entirety of the application and/or the ecosystem they
live in.

10

Mayhem is a new technique under the dynamic testing and grey-box testing

category. The defects Mayhem identifies are unknown unknown risks. Mayhem

uses advanced fuzz testing techniques to uncover defects utilizing unknown or

uncommon attack patterns. After each simulated attack, it monitors and leverages

its target reactions, or behaviors, as feedback to autonomously generate new

test cases that are increasingly likely to uncover more defects and new code

edges.

Mayhem operates between the world of “what-if” and “what-is”. It uncovers unknown

defects, enabling organizations to be preventative and proactive. Interestingly,

continuous fuzz testing like Mayhem has been a proven and accepted software

security practice for years. However, fuzzing has been exclusive to technology

behemoths, such as Google, Microsoft, Apple, Nvidia, and more, who have the

technical savvy and budget to implement and maintain such technologies.

Latest advancements in this field of study have dramatically improved

usability, making Mayhem increasingly accessible to everyone. Although

dynamic testing has required complete builds for testing, Mayhem has defied

these inherent limitations with its capability to conduct regression and component

testing during development, allowing organizations to find issues early, often, and

continuously as a part of their DevOps pipeline.

Security engineers of Google’s OSS-Fuzz team have disclosed that while it is possible

to bootstrap and operate high-performance fuzzers, people often underestimate the

complexity of upstanding such solutions. Yet, the benefit of fuzzing is undeniable.

Teams at Google report that fuzzing uncovers 80% of their bugs, with the other

20% uncovered by other testing techniques, or naturally in production.

11

True to the DAST technique, Mayhem is accurate and precise, uncovering

defects with zero false positives. As mentioned prior, Mayhem is a grey-box

solution, which means it conducts dynamic testing with visibility into source code.

It can pinpoint the exact line of affected code and provides expert remediation

advice, making fixes as simple as possible for developers.

Mayhem in Action:
Award Winning TechnolZogy at DARPA Cyber Grand Challenge

The 2016 DARPA Cyber Grand Challenge first put to the test an early prototype of

Mayhem. At the time, Mayhem and six other finalists competed in an open source

operating system extension built exclusively for computer security research and

experimentation. In this environment Mayhem was able to perform and execute

tasks autonomously and without human intervention including automatically

patching vulnerabilities -- something that has yet to be done in the real

world today.

It's important to point out the evolution of Mayhem from DARPA CGC-winning

prototype to the advanced testing technology it is today. By competing in the DARPA

CGC, the ForAllSecure researchers were able to iterate on Mayhem and bring lessons

learned from the DARPA CGC into real-world situations.

DARPA CGC set the stage for Mayhem and autonomous security. Since then,

Mayhem continues to revolutionize the application security world and solve

real-world problems.

+

12

Secure development practices call for the use of various testing techniques

throughout the development lifecycle. SAST, SCA, and Mayhem strategically
offer strength in each technique’s limitations, offering comprehensive
application testing across the spectrum of software security risk.

Solutions for Unknown Risks

SAST for Known Unknown Risk
SAST directly analyzes the code to detect coding and design vulnerabilities and/or

weaknesses. There is a focus on quality with a low number of false-positives. Test

during the SDLC development phase with manual test case creation.

Unconfirmed Exploitability

of Found Bugs

Fast Interaction

of Loop

Doesn’t Check

Every Line of Code

Non-Running State

During Testing

Low to

Medium Accuracy

Low

Automation

No Supply

Chain Management

? x

SAST Alone

13

Secure development practices call for the use of various testing techniques

throughout the development lifecycle. SAST, SCA, and Mayhem strategically
offer strength in each technique’s limitations, offering comprehensive
application testing across the spectrum of software security risk.

Confirmed Exploitability

of Found Bugs

Fast Interaction

of Loop

Doesn’t Check

Every Line of Code

Running state

during testing

High

Accuracy

High

automation

Supply

Chain Management

 

Comprehensive Security

There are many benefits to employing a multi-pronged software
security approach:

Lower costs due to early vulnerability prevention and/or detection.

Greater software quality, security, and stability.

Security testing for right- and left-of-ship.

Secured and hardened attack surface for minimized risk.

Detection of known, unknown, and zero-day vulnerabilities.

1

2

3

4

5

14

Interested in trying a
security testing solution that
increases app security?

SCHEDULE
A DEMO

mayhem.security/demo

15

Software is everywhere. It permeates nearly every aspect of our lives and has proven

itself to be a productivity enhancer. As our dependency on software increases, we

must ensure their reliability.

A multi-pronged application security strategy comprised of static analysis,

software composition analysis, and continuous fuzz testing offer comprehensive

security testing coverage across the spectrum of software risks. Well-known

testing techniques like SAST and SCA are not enough as they can leave significant

gaps behind.

Mayhem’s continuous fuzz testing is a proven and accepted method for uncovering

unknown defects automatically. It offers strengths in SAST and SCA’s limitations.

Utilizing a combination of these three security testing techniques not only ensure

that organizations are enabled to deliver safe, secure, reliable software and service,

but also implements predictability in today’s unpredictable, ever-changing

threat landscape.

https://www.mayhem.security/demo

